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Abstract: This study suggests a sequential artificial neural network (ANN) 
method coupled with a multi-level grid system to optimise multi-well 
placement in petroleum reservoirs. As the number of scenarios for placing 
wells increases exponentially with the number of wells, the difficulty in finding 
the global optimum increases accordingly due to the intrinsic uncertainty of 
ANNs. The multi-level grid system can reduce the size of the search space by 
allocating only one well grid block per several grid blocks in the basic grid 
system. A higher level of grid system consists of finer grid blocks to gradually 
improve the resolution of the grid system. Repetitive implementation of the 
sequential ANN at each level of the grid system narrows the search space, and 
the global optimum is determined. The proposed algorithm is validated with 
applications to two- and three-infill-well problems in a coal-bed methane 
(CBM) reservoir. [Received: March 16, 2018; Accepted: September 19, 2018] 
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1 Introduction 

Optimal well placement is one of the most critical tasks for maximising the economics of 
oil and gas field development and requires computationally expensive reservoir 
simulations. Various optimisation methods have been introduced in the petroleum 
industry for reducing computational costs. Hou et al. (2015) reviewed details of 
optimisation methods such as gradient-based and gradient-free algorithms including 
artificial intelligence methods. They also discussed key issues for future developments. 
Although many authors have used gradient-based methods in optimisation problems 
(Bangerth et al., 2006; Wang et al., 2007; Sarma and Chen, 2008; Forouzanfar et al., 
2010), there is an intrinsic limitation in that the solution tends to be stuck in local optima 
despite the fast convergence. 

To circumvent the drawback of the gradient-based methods and increase the 
likelihood of identifying the global optimum, stochastic search algorithms have been 
utilised in well placement optimisation: genetic algorithm (GA), particle-swarm 
optimisation (PSO), imperialist-competitive algorithm (ICA), artificial bee colony (ABC) 
algorithm, bat inspired algorithm (BA), and so on. The GA has been widely used in well 
placement optimisation because of its ability to find the global solution (Bittencourt and 
Horne, 1997; Yeten et al., 2003; Emerick et al., 2009; Lee at al., 2009; Salmachi et al., 
2013; Sayyafzadeh, 2017). Onwunalu and Durlofsky (2010) applied the PSO to 
investigate the optimum type and location of new wells and showed that the PSO 
outperformed the GA. Feng et al. (2012) presented a framework that integrated a 
reservoir simulator into the PSO algorithm and optimised well placement in a CBM 
reservoir. Humphries et al. (2014) used the PSO with a local generalised pattern search 
algorithm to determine optimal well placement and control strategy. 
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Al Dossary and Nasrabadi (2015) utilised the ICA to determine optimal well location 
for maximum well productivity. The ICA mimics socio-political imperialist competition. 
They showed that the ICA achieved a better solution than the PSO and GA.  
Nozohour-leilabady and Fazelabdolabadi (2016) compared the ABC algorithm with the 
PSO, indicating the great promise of the ABC algorithm for well optimisation. Naderi 
and Khamehchi (2017) applied the BA for optimal determination of well locations in the 
PUNQ-S3 benchmark model and showed that the BA provided better net present value 
over the GA and PSO. Compared to gradient-based methods, stochastic algorithms are 
more robust and have greater opportunities to search for the global optimum. However, 
the stochastic algorithms require more simulation runs than the gradient-based methods 
(Hou et al., 2015). 

To reduce the number of simulation runs, surrogate model techniques have been 
adopted in stochastic approaches. One of the promising models is the ANN, which 
comprises input, hidden, and output layers with neurons in each layer (Masters, 1993). 
The training data is transferred from the input to the output layer via one or more hidden 
layers. Weights interconnecting neurons between the layers, which represent a latent 
characteristic of the network, are calibrated by back propagation. The trained ANN is 
then utilised to predict reservoir behaviours. 

Centilmen et al. (1999) suggested a two-step approach using ANNs for well 
placement optimisation with a limited number of scenarios. Gűyagűler et al. (2000) 
reduced the number of simulation runs required to search for the optimal well location 
using GA, polytope algorithm, hybrid GA with Kriging algorithm, and an ANN. Yeten  
et al. (2003) optimised well locations, well types, and trajectories simultaneously in 
unconventional fields using GA with ANNs, hill climbers, and near-well upscaling 
techniques. Reflecting production potential as a quality map into an ANN improved the 
predictability of the ANN (Min et al., 2011). Sayyafzadeh (2017) applied two ANNs with 
GA for well placement optimisation: the first ANN approximated the objective function, 
while the second one estimated the accuracy of the first ANN over the search space. 
Recently, Jang et al. (2018) suggested a sequential ANN method for single horizontal 
well placement. In this method a series of ANN models were used sequentially to reduce 
the search space and the global optimum was determined from near optimal candidates. 
The result showed that the sequential ANN method outperformed the population-based 
PSO in that it required a smaller number of simulation runs and verified the capability of 
finding the true global optimum. 

However, the sequential ANN method should be used carefully when applied for 
multi-well placement problems: there might be too many scenarios to consider in a single 
procedure. For example, let us consider a 2D reservoir of 50 × 50 grids (i.e., total of 
2,500 grids). When exploring the optimal placement of one vertical well, there are  
2,500 scenarios. However, there are 3,123,750 (= C(2,500, 2) = 2,500 × 2,499 / 2!) 
scenarios for a two-well placement problem and 2.6 × 109 (= C(2,500, 3)) scenarios for a 
three-well placement problem, where C(n, k) is the number of k-combinations from a set 
of n elements. In other words, the number of scenarios to be explored using the sequential 
ANN method increases exponentially with number of wells. This huge number of 
scenarios deteriorates the reliability of the method. Furthermore, a relatively small 
amount of training data compared to the size of the search space aggravates the 
predictability of the ANN. In addition, the total number of cut-off procedures to reduce 
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the search space increases exponentially. These issues increase the probability of not 
finding the global optimum at affordable computational costs. 

This study proposes an improved method that can overcome the aforementioned 
limitations by coupling a multi-level grid system with the sequential ANNs. In the 
proposed method, sequential ANNs are repeatedly applied from coarse to fine grid 
systems, which maintains the search space at a manageable size. The proposed method is 
applied to two- and three-well placement problems in a CBM reservoir. 

2 Methodology 

2.1 Sequential ANN 

A new methodology is proposed for solving multi-well placement optimisation. The key 
scheme incorporates a multi-level grid system in the sequential ANN method. The 
procedure of the sequential ANN method, as shown in Figure 1, is briefly described as 
follows. 

1 An initial ANN model is trained using initial training data obtained through reservoir 
simulation. 

2 After defining the search space to find the global optimum, objective functions are 
estimated in the search space by the ANN model. The objective functions can be 
defined as oil or gas production, economic indicators, or both. 

3 A new reduced space for the subsequent search is determined with top R ranks 
among the objective functions. Note that R is a cut-off criterion. 

4 To train the subsequent ANN model, N data points are newly chosen from the 
reduced search space and added to the existing training dataset after simulation runs. 
Note that N is equal to or smaller than the number of the initial training data, thereby 
improving the prediction performance of the subsequent ANN model. 

5 Objective functions are estimated in the reduced search space by the subsequent 
ANN model. 

6 Steps 3 through 5 repeatedly reduce the search space until stopping criteria are 
satisfied. One of the stopping criteria can be defined as follows: let the reduced 
search space T be the number of data points not including the training data. When T 
is not greater than 2 × N, the stopping criterion is satisfied. 

7 Once the stopping criteria are satisfied, reservoir simulation runs should be 
performed for the T data. The global solution can be found as the optimal value 
among the simulation results including the training data. The total number of 
reservoir simulations is equal to the sum of the numbers of the T and training data. 
An application of the sequential ANN for single well placement in a CMB reservoir 
is described in the Appendix, and more details can be found in Jang et al. (2018). 
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Figure 1 Flowchart of the sequential ANN method 

 

Source: Jang et al. (2018) 

Figure 2 Flowchart of the proposed sequential ANN incorporated with multi-level grid system 
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2.2 Multi-level grid system 

The multi-level grid system is implemented to alleviate the burden of considering too 
many scenarios in invoking a single ANN model. Figure 2 shows a flowchart to apply the 
sequential ANN method in the multi-level grid system. Introduction of the multi-level 
grid system significantly reduces the size of the search space and narrows the region in 
which the global solution is likely to exist, thereby increasing the probability of finding 
the global optimum. Details of the procedure are as follows. 

1 Each grid block in the 1st level grid system is composed of n1 × n1 blocks of the 
basic grid system. Figure 3(a) shows an example of the 1st level grid system, 
denoted by thick solid lines, with the underlying basic grid system composed of  
50 × 50 grid blocks. In Figure 3(a), n1 = 5: each block in the 1st level grid system 
consists of 5 × 5 blocks of the basic grid system. A red dot represents a well block 
where one infill well can be placed in the 1st level grid system. Note that this grid 
approach is different from the upscaling of grid property. The property of the basic 
grid system is still used to run reservoir simulations for the 1st level grid system, but 
only one well can be located in the centre of the 5 × 5 grid blocks. Although each 
grid block has a different production performance owing to reservoir heterogeneity, 
the performance of the well block can be considered a reference regarding the local 
area near the well. The 1st grid system has 10 × 10 grid blocks; therefore, the search 
space is radically reduced to 4,950 (= C(100, 2)) scenarios for a two-well placement 
problem and 161,700 (= C(100, 3)) scenarios for a three-well placement problem, 
compared to 3,123,750 and 2.6 × 109 scenarios in the basic grid system, respectively. 

2 The sequential ANN method is applied in the 1st level grid system, and the top r1 
ranks of the objective functions are selected as a new search space for the 2nd level 
grid system. The optimal solution in the 1st level grid system is not necessarily the 
true global solution in the basic grid system because reservoir heterogeneity results 
in uncertainty in the performance of neighbouring grids. Therefore, combining the 
top r1 ranked solutions increases the probability of finding a true global solution in 
the selected region. Grid blocks with yellow colour in Figure 3(b) represent a 
reduced search space composed of the top r1 ranked solutions. Note that the grey 
region near the yellow coloured blocks is also included in the search space to 
consider reservoir heterogeneity. 

3 The 2nd level grid system is generated with the reduced search space where each 
grid block is composed of n2 × n2 blocks of the basic grid system. Figure 3(c) shows 
the 2nd level grid system, of which a block is composed of 3 × 3 blocks of the basic 
grid system. To increase the reliability of well performance, the size of each block is 
kept smaller than that of the 1st level grid system. 

4 After applying the sequential ANN method in the 2nd level grid system, top r2 
ranked solutions are selected to make a new search space where the 3rd level grid 
system is constructed with a smaller block size than that of the previous grid system. 
The shaded area in Figure 3(d) represents the new search space for the 3rd level grid 
system. 
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5 The sequential ANN method is repeatedly applied for higher levels of the grid 
system until the block size is the same as that of the basic grid system. The global 
optimum is determined once the sequential ANN method is applied in the final grid 
system. Figure 3(e) shows the 3rd level grid system with the same block size as the 
basic grid system. 

Figure 3 (a) Initial search space in the 1st level grid system (b) Top r1 ranked solutions in the 1st 
level grid system (c) Initial search space in the 2nd level grid system (d) Top r2 ranked 
solutions in the 2nd level grid system (e) Initial search space in the 3rd level grid 
system (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

 
(e) 
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3 Results and discussion 

3.1 Application to a CBM reservoir 

The proposed sequential ANN method with the multi-level grid system is applied to two 
cases of multi-well placement problems in a CBM reservoir, which was used for 
optimising single well placement in Jang et al. (2018). The reservoir produces methane 
gas for three years through six vertical wells (p1–p6), as shown in Figure 4. The common 
goal of the two case studies is to find the optimal locations maximising 20-year field 
production for two and three infill wells. The reservoir size is 6.1 × 3.7 km discretised 
into 61 × 37 × 3 grid blocks. The size of each block is 100 m in the x and y directions 
with reservoir thickness in the range of 3–10 m. The reservoir properties are summarised 
in Table 1. 

Figure 4 Sector model of CBM reservoir (see online version for colours) 

 

Table 1 Properties of CBM reservoir 

Reservoir parameters Values 
Cleat spacing 10 cm 
Sorption time 1 day 
Reservoir pressure 5,456 kPa at 300 m 
Gas type CH4 
Langmuir volume, VL (CH4) 0.14–0.74 gmol/kg 
Langmuir pressure, PL (CH4) 2,887 kPa 
Permeability model Palmer and Mansoori 
Matrix permeability 0.001 md 
Permeability of face cleat 44–105 md 
Permeability of butt cleat 11–26 md 
Matrix porosity 0.08 
Cleat porosity 0.02–0.03 
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The total number of scenarios wherein the infill well can be located in the reservoir is 
2,532,375 and 1,898,437,125 for the two- and three-well placement problems, 
respectively, indicating that it is not feasible to conduct reservoir simulations for every 
scenario. Instead, if it is possible to perform simulation runs for all scenarios in a certain 
level of grid system, the global optimum is identified in advance from the simulation to 
verify the proposed methodology. Simulation runs are conducted using GEM developed 
by Computer Modelling Group Ltd. (CMG, 2016). 

3.2 Optimisation of two-well placement case 

The ANN model consists of one input, one hidden, and one output layer. The numbers of 
neurons in the input, hidden, and output layers are 30, 10, and 1, respectively. The input 
and output data types used to train the neural networks are listed in Table 2. 
Table 2 Input and output data for artificial neural network 

 Data type # of neurons 
Input data Infill well x-y coordinates 4 

Distance from the infill well to reservoir boundary 8 
Permeability of infill well blocks 6 
Inter-distance between existing wells and infill well 12 

Output data Field total of 20-year gas production 1 

Figure 5 (a) Search space in the 1st level grid system (b) Reduced search space after sequential 
ANN (see online version for colours) 

  
(a)     (b) 

Notes:  Search space. 
 Existing wells. 
 Search space of top 5 ranks. 

Figure 5(a) shows the 1st level grid system with the size of 12 × 7 grids (thick solid line) 
and candidate well locations (red dot) that overlap the basic grid system (thin solid line). 
Note that each block of the 1st level grid system is composed of 5 × 5 blocks of the basic 
grid system. The results of applying the sequential ANN in the 1st grid system are 
summarised in Table 3 and Figure 6. The cut-off value R starts from 15% at an increment 
of 5% until 30% for subsequent ANN models. The increment in R increases the 
likelihood of including the global solution in subsequent search spaces (Jang et al., 2018). 
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The number of initial training data is 40, and ten data are newly added from the reduced 
search space whenever a subsequent ANN model is trained. 
Table 3 Result of sequential ANN method with the 1st level grid system for two-well case 

ANN 
model 

Cut-off 
value R (%) 

# of training 
data 

Size of search 
space1) 

Rank of the global 
solution (%) 

# of simulation 
runs 

1st 15 40 3,486 0.46 40 
2nd 20 50 557 1.62 10 
3rd 25 60 159 3.77 10 
4th 30 70 98 9.18 10 
- - - - - 182) 

Notes: 1) The size of the search space is the union of the top R ranked data and the 
training data in each iteration. 2) Simulations for the remaining search space after 
the final cut-off process are counted. 

Figure 6 Cross plots of sequential ANN models and simulation results for the 1st level grid 
system using the (a) 1st ANN, (b) 2nd ANN, (c) 3rd ANN and (d) 4th ANN (see online 
version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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The size of the initial search space is 3,486 (= C(84, 2)) for two-well placement. An 
initial ANN model is generated using 40 data randomly selected in the search space. 
Figure 6(a) shows the performance of the initial ANN model. Note that all scenarios in 
the search space are simulated in advance to verify ANN predictability. The horizontal 
and vertical axes represent the simulation and ANN results, respectively, where a closed 
circle with green colour denotes training data, and an open circle with blue colour 
denotes a scenario in the search space. The open circle with red colour represents the 
global solution in the 1st grid system. Note that the global solution is in the rank of 
0.46% from the top. With the cut-off value of 15% (red horizontal line), a new search 
space is generated. The size of the new search space is 557. 

The 2nd ANN model is trained using new ten data from the new search space in 
addition to the previous training data. The performance of the 2nd ANN model is shown 
in Figure 6(b). When the cut-off of 20% is applied, the search space decreases further to a 
size of 159. Figures 6(c) and 6(d) show the results of the 3rd and 4th ANN models in the 
subsequent search space, respectively. The stopping criterion is satisfied after the 4th 
ANN model. It is observed that only 18 scenarios without simulation results remain in the 
final search space. After performing simulation runs for the 18 scenarios and considering 
all the simulation results including the training data, the top five ranked solutions are 
identified. 

Figure 5(b) shows the results obtained using the final ANN model, where the red dot 
represents the remaining search space for two-well placement. The search space is 
composed of two regions in the upper and lower parts of the reservoir with each well in 
each region. The grid blocks with yellow colour indicate the top five ranked solutions. 
The number of simulation runs is 88, and the global solution is within the top 10% for 
each ANN prediction. 

Figure 7 (a) Search space in the 2nd level grid system (b) Reduced search space after sequential 
ANN (see online version for colours) 

  
(a)     (b) 

Notes:  Search space. 
 Existing wells. 
 Search space of top 5 ranks. 

The 2nd level grid system, denoted by thick solid lines in Figure 7(a), is based on the top 
five ranked solutions yielded in the 1st level grid system. Note that each block in the 2nd 
level grid system consists of 3 × 3 blocks of the basic grid system. The results of the 
sequential ANN are summarised in Table 4. The number of initial training data is 30, 
where ten data are selected from the previous training dataset, and 20 data are newly 



   

 

   

   
 

   

   

 

   

   456 I. Jang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

selected within the search space. After applying the 2nd ANN model, the stopping 
criterion is satisfied. A total of 39 simulation runs are required. Figure 7(b) shows the 
remaining search space with the top five ranked solutions in yellow colour. 
Table 4 Result of sequential ANN method with the 2nd level grid system for two-well case 

ANN 
model 

Cut-off value 
R (%) 

# of training 
data 

Size of search 
space1) 

Rank of the global 
solution (%) 

# of simulation 
runs 

1st 15 30 280 4.83 20 
2nd 20 40 71 5.63 10 
- - - - - 92) 

Notes: 1) The size of the search space is the union of the top R ranked data and the 
training data in each iteration. 2) Simulations for the remaining search space after 
the final cut-off process are counted. 

Figure 8 (a) Search space in the 3rd level grid system (b) Reduced search space after sequential 
ANN (see online version for colours) 

  
(a)     (b) 

Notes:  Search space. 
 Existing wells. 
 Global solution. 

Table 5 Result of sequential ANN method with the 3rd level grid system for two-well case 

ANN 
model 

Cut-off value 
R (%) 

# of training 
data 

Size of search 
space1) 

Rank of the global 
solution (%) 

# of simulation 
runs 

1st 30 70 2,800 4.07 40 
2nd 30 85 900 0.89 15 
3rd 30 100 341 1.47 15 
4th 30 115 190 11.05 15 
5th 30 130 155 1.29 15 
     172) 

Notes: 1) The size of the search space is the union of the top R ranked data and the 
training data in each iteration. 2) Simulations for the remaining search space after 
the final cut-off process are counted. 
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The 3rd level grid system is generated on the basis of the yellow colour region  
[Figure 8(a)]. The block size is the same as that of the basic grid system. The sequential 
ANN results are listed in Table 5. As shown in Figure 8(a), the search space can be 
regarded as saturated with near-optimal solutions, which means that most data points in 
the search space evolve toward the global solution. Therefore, a cut-off value of 30% is 
used to increase the likelihood of retaining the global solution in reduced search spaces 
throughout the process despite slow convergence. The number of initial training data is 
70: 30 from the existing training dataset and 40 from newly selected data within the 
search space. Five iterations of the ANN models are required, and the global solution is 
mostly within the top 10% in each ANN prediction. The final search space is shown in 
Figure 8(b) where the optimal well placement is presented as green dots of (32, 33) and 
(31, 11). The cross plot of each ANN result is shown in Figure 9. Sub-optimal values are 
gradually excluded from the reduced search space as the process continues. 

Figure 9 Cross plots of sequential ANN models and simulation results for the 3rd level grid 
system using the (a) 1st ANN, (b) 2nd ANN, (c) 3rd ANN and (d) 4th ANN (see online 
version for colours) 

  
(a)     (b) 

  
(c)     (d) 

The cumulative gas for 20-year production with two optimal infill wells is  
772,690,560 m3 (Figure 10). The total numbers of simulation runs are 244: 88 for the 1st, 
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39 for the 2nd, and 117 for the 3rd level grid system. The top five ranked solutions for the 
multi-level grid systems are listed in Table 6, where it is observed that the solutions 
become saturated with near-optimal solutions as the level of grid system is high. 

Figure 10 Cumulative gas production profile for two-well case (see online version for colours) 

 

Table 6 List of top five ranks with multi-level grid system for two-well case 

Rank 
Infill well 1  Infill well 2 Objective function 

(m3) I J I J 
1st level grid system 

1 29 34  34 9 770,267,520 
2 24 34  29 9 766,720,130 
3 29 34  44 14 766,270,270 
4 29 34  39 14 765,902,460 
5 24 34  34 9 765,812,610 

2nd level grid system 
1 30 34  35 9 770,929,340 
2 30 34  32 9 770,922,430 
3 30 34  35 12 769,344,320 
4 27 34  32 9 768,472,000 
5 30 34  29 9 768,291,900 

3rd level grid system 
1 32 33  31 11 772,690,560 
2 32 33  33 9 772,508,220 
3 32 33  33 11 772,444,540 
4 32 33  32 9 772,242,110 
5 32 33  35 9 772,240,770 
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3.3 Optimisation of three-well placement case 

The same design parameters as for the two-well placement case are used to find the 
optimal placement of three infill wells except the number of training data. In 
consideration of the size of the search space, a larger number of data are used to train the 
ANNs. The overall performance of the method is summarised in Table 7. The total 
number of scenarios is 95,284 in the 1st level grid system, and seven iterations of the  
cut-off process are performed with 189 simulation runs. The sequential ANN method in 
the 2nd level grid system, generated with the top five rank solutions, results in 4 ANN 
models and 80 simulation runs. The 3rd level grid system requires seven ANN models 
with 293 simulation runs before the global solution is identified. Thus, the total number 
of simulation runs is 562. The rank of the global solution is within the top 10% in the 2nd 
level grid system but cannot be assessed for the 1st and 3rd level grid systems because it 
is practically infeasible to conduct simulation runs for all scenarios. 
Table 7 Result of sequential ANN method with multi-level grid system for three-well case 

ANN 
model 

Cut-off 
value R (%) 

# of training 
data 

Size of search 
space1) 

Rank of the global 
solution (%) 

# of simulation 
runs 

1st level grid system 
1st 15 50 95,284 N/A 50 
2nd 20 70 14,335 N/A 20 
3rd 25 90 2,925 N/A 20 
4th 30 110 813 N/A 20 
5th 30 130 344 N/A 20 
6th 30 150 219 N/A 20 
7th 30 170 191 N/A 20 
- - - - - 192) 

2nd level grid system 
1st 15 50 3,000 4.80 30 
2nd 20 60 502 5.98 10 
3rd 25 70 155 1.94 10 
4th 30 80 105 0.95 10 
- - - - - 202) 

3rd level grid system 
1st 30 100 83,875 N/A 61 
2nd 30 130 25,246 N/A 30 
3rd 30 160 7,687 N/A 30 
4th 30 190 2,450 N/A 30 
5th 30 220 911 N/A 30 
6th 30 250 468 N/A 30 
7th 30 280 353 N/A 30 
     522) 

Notes: 1) The size of the search space is the union of the top R ranked data and the 
training data in each iteration. 2) Simulations for the remaining search space after 
the final cut-off process are counted. 
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Figure 11 Search space remaining in the (a) 1st level grid system, (b) 2nd level grid system and 
(c) 3rd level grid system (see online version for colours) 

  
(a)     (b) 

 
(c) 

Notes:  Search space. 
 Existing wells. 
 Search space of top 5 ranks. 
 Global solution. 

Figure 12 Cumulative gas production profile for three-well case (see online version for colours) 
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Figure 11 shows the trend of reduced search space according to level of the grid system. 
Once the sequential ANN method is applied to the 1st level grid system, three distinct 
regions are identified as potential locations for each well [Figure 11(a)]. After narrowing 
the search space using grid systems with higher resolution, the optimal placement for the 
three wells is identified, as shown in Figure 11(c). The three green dots in Figure 11(c) 
are the optimal locations determined for the three infill wells. The top five ranks of each 
level of the grid system are listed in Table 8. The solutions are collected around the 
optimal solution. The cumulative gas of 20-year production is 824,157,820 m3 and the 
corresponding profile is depicted in Figure 12. 
Table 8 List of top five ranks with multi-level grid system for three-well case 

Rank 
Infill well 1  Infill well 2  Infill well 3 Objective 

function (m3) I J I J I J 
1st level grid system 

1 24 34  44 34  34 9 820,813,060 
2 24 34  34 29  34 9 820,722,500 
3 24 34  39 29  34 9 819,734,780 
4 19 34  39 34  34 9 818,328,580 
5 24 34  44 34  29 9 818,216,450 

2nd level grid system 
1 22 34  40 32  32 9 821,426,940 
2 22 34  40 32  35 12 820,788,100 
3 22 34  40 32  29 9 820,701,180 
4 19 34  40 32  32 9 820,650,430 
5 25 34  40 32  32 9 820,412,420 

3rd level grid system 
1 23 35  39 32  33 9 824,157,820 
2 23 35  39 32  31 11 824,004,800 
3 23 35  39 32  34 9 823,981,440 
4 23 34  39 32  33 9 823,925,820 
5 23 35  39 32  32 9 823,904,450 

4 Conclusions 

In this study, the sequential ANN method incorporated with the multi-level grid system 
was proposed to optimise multi-well placement, and applied for two- and three-well cases 
in a CBM reservoir. As the number of wells for optimisation increased, the number of 
scenarios increased exponentially. Too many scenarios could make it difficult to find the 
optimal solution only using the sequential ANN method. This limitation was relieved by 
introducing the multi-level grid system that reduced the number of scenarios in the search 
space by defining one well block per several blocks in the basic grid system. By 
repeatedly applying the sequential ANN in each level of the grid system, the search space 
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reduced effectively, and the global solution was determined successfully. Considering 
that a relatively small number of simulations were required in comparison to the size of 
search space, the proposed methodology was proved to be efficient for well placement 
optimisation. 

In general, the design parameters of the sequential ANN and the multi-level grid 
system depend on the characteristics of the problem. When the size of the problem is 
enormous, the grid block of the 1st level grid system should be large enough to reduce 
the search space to a manageable size. However, too large a grid block makes it difficult 
for the well performance to represent the grid block. This issue could be averted by 
increasing the number of top ranked solutions used to generate a reduced search space for 
the next level grid system, by reducing model size using a sector model rather than a  
full-field model if possible, or by focusing on the sweet spots in the reservoir from expert 
opinions, etc. 
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Appendix 

Application of the sequential ANN method 

Application of the sequential ANN method is briefly summarised for optimal placement 
of a single horizontal well in the reservoir shown in Figure 4 (Jang et al., 2018). The 
number of initial training data is 20, with 10 of east-west and 10 of north-south 
directions. The cut-off value R is set to 15, 20, and 30% for the subsequent ANN models 



   

 

   

   
 

   

   

 

   

   464 I. Jang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

and 40% for the fourth and later models. Ten training data points are newly added to the 
existing training dataset to train the subsequent ANN model. 

Figure 13 shows the search space maps which result from the sequential ANN 
method. A new search space reduced by the procedure is represented by a red dot, and the 
training data is indicated by a green dot. Thus, the 1st ANN model reduces the entire 
search space into a smaller search space, as shown in Figure 13(a), which is the input for 
the 2nd ANN model. The procedure ends after the ANN model is applied four times, and 
the global solution is identified by a yellow dot [Figure 13(d)]. The global solution is 
verified with exhaustive simulation runs, which are performed separately for all 
scenarios. The optimal well placement is determined as shown in Figure 14(a), and the 
production performance is depicted in Figure 14(b). 

Figure 13 Search space map after applying the (a) 1st ANN model, (b) 2nd ANN model,  
(c) 3rd ANN model and (d) 4th ANN model (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Notes:  Reduced search space T; 
 Existing well locations; 
 Global solution; 
 Training data. 
Source: Modified from Jang et al. (2018) 
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Figure 14 (a) Optimal infill well location selected using sequential ANN (b) Comparison of 
cumulative gas productions for optimal infill well and existing wells (see online 
version for colours) 

 
(a) 

 
(b) 

Source: Jang et al. (2018) 


